
DATA STRUCTURES USING ‘C’

Data Structures

Notes on Quicksort
 Quicksort is more widely used than any other sort.
 Quicksort is well-studied, not difficult to implement,

works well on a variety of data, and consumes fewer
resources that other sorts in nearly all situations.

 Quicksort is O(n*log n) time, and O(log n) additional
space due to recursion.

Quicksort Algorithm
• Quicksort is a divide-and-conquer method for sorting.

It works by partitioning an array into parts, then
sorting each part independently.

• The crux of the problem is how to partition the array
such that the following conditions are true:
– There is some element, a[i], where a[i]
is in its final position.

– For all l < i, a[l] < a[i].

– For all i < r, a[i] < a[r].

Quicksort Algorithm (cont)
• As is typical with a recursive program, once you figure out

how to divide your problem into smaller subproblems, the
implementation is amazingly simple.

int partition(Item a[], int l, int r);
void quicksort(Item a[], int l, int r)

{ int i;
if (r <= l) return;
i = partition(a, l, r);
quicksort(a, l, i-1);
quicksort(a, i+1, r);

}

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

Q U I C K S O R T I S C O O L

partitioned

partition element left

right

unpartitioned

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers crossswap me

Q U I C K S O R T I S C O O L

partitioned

partition element left

right

unpartitioned

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

Q U I C K S O R T I S C O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

Q U I C K S O R T I S C O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

Q U I C K S O R T I S C O O L

swap me

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

C U I C K S O R T I S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers crossswap me

partitioned

partition element left

right

unpartitioned

C U I C K S O R T I S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

C U I C K S O R T I S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

C U I C K S O R T I S Q O O L

swap me

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• exchange
• repeat until pointers cross

partitioned

partition element left

right

unpartitioned

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
 How do we partition the array efficiently?

 choose partition element to be rightmost element
 scan from left for larger element
 scan from right for smaller element
 Exchange and repeat until pointers cross

partitioned

partition element left

right

unpartitioned

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
 How do we partition the array efficiently?

 choose partition element to be rightmost element
 scan from left for larger element
 scan from right for smaller element
 Exchange and repeat until pointers cross

swap me

partitioned

partition element left

right

unpartitioned

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
 How do we partition the array efficiently?

 choose partition element to be rightmost element
 scan from left for larger element
 scan from right for smaller element
 Exchange and repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• Exchange and repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• Exchange and repeat until pointers cross

partitioned

partition element left

right

unpartitioned

swap me

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
 How do we partition the array efficiently?

 choose partition element to be rightmost element
 scan from left for larger element
 scan from right for smaller element
 Exchange and repeat until pointers cross

pointers cross
swap with
partitioning
element

partitioned

partition element left

right

unpartitioned

C I I C K S O R T U S Q O O L

Partitioning in Quicksort
– How do we partition the array efficiently?

• choose partition element to be rightmost element
• scan from left for larger element
• scan from right for smaller element
• Exchange and repeat until pointers cross

partitioned

partition element left

right

unpartitioned

partition is
complete

C I I C K L O R T U S Q O O S

Quicksort Demo
• Quicksort illustrates the operation of the basic

algorithm. When the array is partitioned, one element
is in place on the diagonal, the left subarray has its
upper corner at that element, and the right subarray
has its lower corner at that element. The original file is
divided into two smaller parts that are sorted
independently. The left subarray is always sorted first,
so the sorted result emerges as a line of black dots
moving right and up the diagonal.

Why study Heapsort?
 It is a well-known, traditional sorting

algorithm you will be expected to know
Heapsort is always O(n log n)
Quicksort is usually O(n log n) but in the

worst case slows to O(n2)
Quicksort is generally faster, but Heapsort is

better in time-critical applications

What is a “heap”?
 Definitions of heap:

1. A large area of memory from which the
programmer can allocate blocks as
needed, and deallocate them (or allow
them to be garbage collected) when no
longer needed

2. A balanced, left-justified binary tree in
which no node has a value greater than
the value in its parent

 Heapsort uses the second definition

Balanced binary trees
 Recall:

 The depth of a node is its distance from the root
 The depth of a tree is the depth of the deepest node

 A binary tree of depth n is balanced if all the nodes at depths 0 through n-2 have two
children

Balanced Balanced Not balanced

n-2
n-1
n

Left-justified binary trees
• A balanced binary tree is left-justified if:

–all the leaves are at the same depth, or
–all the leaves at depth n+1 are to the left of all

the nodes at depth n

Left-justified Not left-justified

The heap property
• A node has the heap property if the value in

the node is as large as or larger than the
values in its children

• All leaf nodes automatically have the heap property
• A binary tree is a heap if all nodes in it have the heap

property

12

8 3
Blue node has
heap property

12

8 12
Blue node has
heap property

12

8 14
Blue node does not
have heap property

siftUp Given a node that does not have the heap property,
you can give it the heap property by exchanging its
value with the value of the larger child

 This is sometimes called sifting up
 Notice that the child may have lost the heap

property

14

8 12
Blue node has
heap property

12

8 14
Blue node does not
have heap property

Constructing a heap I
 A tree consisting of a single node is automatically a heap

 We construct a heap by adding nodes one at a time:
 Add the node just to the right of the rightmost node in the deepest level
 If the deepest level is full, start a new level

 Examples:

Add a new
node here

Add a new
node here

Constructing a heap II
 Each time we add a node, we may destroy the heap property of its parent node
 To fix this, we sift up
 But each time we sift up, the value of the topmost node in the sift may increase, and this

may destroy the heap property of its parent node
 We repeat the sifting up process, moving up in the tree, until either

 We reach nodes whose values don’t need to be swapped (because the parent is still
larger than both children), or

 We reach the root

Constructing a heap III
8 8

10

10

8

10

8 5

10

8 5

12

10

12 5

8

12

10 5

8

1 2 3

4

Other children are not affected

• The node containing 8 is not affected because its parent gets
larger, not smaller

• The node containing 5 is not affected because its parent gets larger,
not smaller

• The node containing 8 is still not affected because, although its
parent got smaller, its parent is still greater than it was originally

12

10 5

8 14

12

14 5

8 10

14

12 5

8 10

A sample heap
• Here’s a sample binary tree after it has been heapified

• Notice that heapified does not mean sorted
• Heapifying does not change the shape of the binary

tree; this binary tree is balanced and left-justified
because it started out that way

19

1418

22

321

14

119

15

25

1722

Removing the root
• Notice that the largest number is now in the root
• Suppose we discard the root:

• How can we fix the binary tree so it is once again
balanced and left-justified?

• Solution: remove the rightmost leaf at the deepest
level and use it for the new root

19

1418

22

321

14

119

15

1722

11

The reHeap method I
• Our tree is balanced and left-justified, but no longer a heap
• However, only the root lacks the heap property

• We can siftUp() the root
• After doing this, one and only one of its children may have

lost the heap property

19

1418

22

321

14

9

15

1722

11

The reHeap method II
 Now the left child of the root (still the number 11)

lacks the heap property

 We can siftUp() this node
 After doing this, one and only one of its children

may have lost the heap property

19

1418

22

321

14

9

15

1711

22

The reHeap method III
• Now the right child of the left child of the root (still the

number 11) lacks the heap property:

• We can siftUp() this node
• After doing this, one and only one of its children may

have lost the heap property —but it doesn’t, because it’s
a leaf

19

1418

11

321

14

9

15

1722

22

The reHeap method IV
• Our tree is once again a heap, because every node in it

has the heap property

• Once again, the largest (or a largest) value is in the root
• We can repeat this process until the tree becomes empty
• This produces a sequence of values in order largest to

smallest

19

1418

21

311

14

9

15

1722

22

Sorting
• What do heaps have to do with sorting an array?
• Here’s the neat part:

– Because the binary tree is balanced and left justified, it
can be represented as an array

– All our operations on binary trees can be represented as
operations on arrays

– To sort:
heapify the array;
while the array isn’t empty {

remove and replace the root;
reheap the new root node;

}

Mapping into an array

• Notice:
– The left child of index i is at index 2*i+1
– The right child of index i is at index 2*i+2
– Example: the children of node 3 (19) are 7 (18) and 8 (14)

19

1418

22

321

14

119

15

25

1722

25 22 17 19 22 14 15 18 14 21 3 9 11
0 1 2 3 4 5 6 7 8 9 10 11 12

Removing and replacing the root
• The “root” is the first element in the array
• The “rightmost node at the deepest level” is the last element
• Swap them...

• ...And pretend that the last element in the array no longer
exists—that is, the “last index” is 11 (9)

25 22 17 19 22 14 15 18 14 21 3 9 11
0 1 2 3 4 5 6 7 8 9 10 11 12

11 22 17 19 22 14 15 18 14 21 3 9 25
0 1 2 3 4 5 6 7 8 9 10 11 12

Reheap and repeat
• Reheap the root node (index 0, containing 11)...

• ...And again, remove and replace the root node
• Remember, though, that the “last” array index is changed
• Repeat until the last becomes first, and the array is sorted!

22 22 17 19 21 14 15 18 14 11 3 9 25
0 1 2 3 4 5 6 7 8 9 10 11 12

9 22 17 19 22 14 15 18 14 21 3 22 25
0 1 2 3 4 5 6 7 8 9 10 11 12

11 22 17 19 22 14 15 18 14 21 3 9 25
0 1 2 3 4 5 6 7 8 9 10 11 12

Analysis I
 Here’s how the algorithm starts:

heapify the array;

 Heapifying the array: we add each of n nodes
 Each node has to be sifted up, possibly as far as the

root
 Since the binary tree is perfectly balanced, sifting up a

single node takes O(log n) time

 Since we do this n times, heapifying takes n*O(log n)
time, that is, O(n log n) time

Analysis II
• Here’s the rest of the algorithm:

while the array isn’t empty {
remove and replace the root;
reheap the new root node;

}

• We do the while loop n times (actually, n-1 times),
because we remove one of the n nodes each time

• Removing and replacing the root takes O(1) time
• Therefore, the total time is n times however long it

takes the reheap method

Analysis III
• To reheap the root node, we have to follow one path

from the root to a leaf node (and we might stop before
we reach a leaf)

• The binary tree is perfectly balanced
• Therefore, this path is O(log n) long

– And we only do O(1) operations at each node
– Therefore, reheaping takes O(log n) times

• Since we reheap inside a while loop that we do n times,
the total time for the while loop is n*O(log n), or O(n
log n)

Analysis IV
• Here’s the algorithm again:

heapify the array;
while the array isn’t empty {

remove and replace the root;
reheap the new root node;

}

• We have seen that heapifying takes O(n log n) time
• The while loop takes O(n log n) time
• The total time is therefore O(n log n) + O(n log n)
• This is the same as O(n log n) time

The End

40 2 1 43 3 65 0 -1 58 3 42 4
Original:

5-sort: Sort items with distance 5 element:

40 2 1 43 3 65 0 -1 58 3 42 4

Shell Sort: Idea
Donald Shell (1959): Exchange items that are far apart!

40 2 1 43 3 65 0 -1 58 3 42 4
Original:

40 0 -1 43 3 42 2 1 58 3 65 4
After 5-sort:

2 0 -1 3 1 4 40 3 42 43 65 58
After 3-sort:

Shell Sort: Example

After 1-sort:
1 2 3 40 43 650 421 2 3 3 43 650-1 584 43 6542 5840 43 65

Shell Sort: Gap Values
• Gap: the distance between items being

sorted.
• As we progress, the gap decreases. Shell

Sort is also called Diminishing Gap Sort.
• Shell proposed starting gap of N/2,

halving at each step.
• There are many ways of choosing the next

gap.

Shell's Odd Gaps Only Dividing by 2.2
1000 122 11 11 9
2000 483 26 21 23
4000 1936 61 59 54
8000 7950 153 141 114

16000 32560 358 322 269
32000 131911 869 752 575
64000 520000 2091 1705 1249

Shellsort
N

Insertion
Sort

O(N3/2)? O(N5/4)? O(N7/6)?

Shell Sort: Analysis

So we have 3 nested loops, but Shell Sort is still better
than Insertion Sort! Why?

Generic Sort
• So far we have methods to sort integers. What about

Strings? Employees? Cookies?
• A new method for each class? No!
• In order to be sorted, objects should be comparable

(less than, equal, greater than).
• Solution:

– use an interface that has a method to compare two
objects.

• Remember: A class that implements an interface
inherits the interface (method definitions) = interface
inheritance, not implementation inheritance.

Other kinds of sort

 Heap sort. We will discuss this after tree.
 Postman sort / Radix Sort.
 etc.

